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Abstract. The small-world phenomenon has been already the subject of a huge variety of papers, showing
its appeareance in a variety of systems. However, some big holes still remain to be filled, as the commonly
adopted mathematical formulation is valid only for topological networks. In this paper we propose a gen-
eralization of the theory of small worlds based on two leading concepts, efficiency and cost, and valid also
for weighted networks. Efficiency measures how well information propagates over the network, and cost
measures how expensive it is to build a network. The combination of these factors leads us to introduce
the concept of economic small worlds, that formalizes the idea of networks that are “cheap” to build, and
nevertheless efficient in propagating information, both at global and local scale. In this way we provide an
adequate tool to quantitatively analyze the behaviour of complex networks in the real world. Various com-
plex systems are studied, ranging from the realm of neural networks, to social sciences, to communication
and transportation networks. In each case, economic small worlds are found. Moreover, using the economic
small-world framework, the construction principles of these networks can be quantitatively analyzed and
compared, giving good insights on how efficiency and economy principles combine up to shape all these

systems.

PACS. 89.70.4c Information theory and communication theory — 05.90.4+m Other topics in
statistical physics, thermodynamics, and nonlinear dynamical systems — 87.18.Sn Neural networks —

89.40.+k Transportation

1 Introduction

Nonlinear dynamics and statistical physics are two dis-
ciplines that have found an intensive application in the
study of complex systems. A complex system is a sys-
tem consisting of a large number of interdependent parts
or elements. In this definition the term interdependent is
essential, in fact to understand the behavior of a com-
plex system we must understand not only the behavior
of the parts but how they act together to form the be-
havior of the whole. The classical examples of complex
systems include social and biological systems. The simple
elements of such systems, the neurons in a brain, the peo-
ple in a social system and the cells in a biological organism
are strongly interconnected. Even if we know many things
about a neuron or a specific cell, this does not mean we
know how a brain or a biological system works: any ap-
proach that would cut the system into parts would fail.
We need instead mathematical models that capture the
key properties of the entire ensemble [1,2].

A complex system can be modelled as a network, where
the vertices are the elements of the system and the edges
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represent the interactions between them. On one hand
scientists have studied the dynamics of networks of cou-
pled chaotic systems. Since many things are known about
the chaotic dynamics of low-dimensional nonlinear sys-
tems, a great progress has been achieved in the under-
standing of the dynamical behavior of many chaotic sys-
tems coupled together either in a regular array (coupled
chaotic maps [3]), or in a completely random way [4,5].
On the other hand a parallel approach, and our paper be-
longs to this, aims at understanding the structural proper-
ties (the connectivity properties) of a complex system. In
fact, the structure of the network can be as important as
the nonlinear interactions between the elements. An accu-
rate description of the coupling architecture and a char-
acterization of the structural properties of the network
can be of fundamental importance also to understand the
dynamics of the system. This line of research has given
rather unexpected results. In a recent paper [6], Watts and
Strogatz have shown that the connection topology of some
biological, technological and social networks is neither
completely regular nor completely random but stays some-
how in between these two extreme cases [7]. This particu-
lar class of networks, named small worlds in analogy with
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the concept of the small-world phenomenon observed more
than 30 years ago in social systems [8], are in fact highly
clustered like regular lattices, yet having small character-
istic path lengths like random graphs. The paper by Watts
and Strogatz has triggered a large interest on the study
of the properties of small worlds [7,9]. Researchers have
focused their attention on different aspects: study of the
onset mechanism [10-13], dynamics [14] and spreading of
diseases on small worlds [15], applications to social net-
works [16-18] and to Internet [19,20].

Though the small-world concept has shown to have a
lot of appeal in different fields, there are still some as-
pects that need to be better understood. In particular
in this paper we show that the study of a generic com-
plex network poses new challenges, that can in fact be
overcome by using a generalization of the ideas presented
by Watts and Strogatz. The small-world behavior can be
defined in a general and more physical way by consider-
ing how efficiently the information is exchanged over the
network. The formalism we propose is valid both for un-
weighted and weighted graphs and extends the application
of the small-world analysis to any complex network, also
to those systems where the Euclidian distance between
vertices is important and therefore too poorly described
only by the topology of connections [21]. The paper is or-
ganized as follows. In Section 2 we examine the original
formulation proposed by Watts and Strogatz for topolog-
ical (unweighted) networks, the WS formulation. In Sec-
tion 3 we present our formalism based on the global and
local efficiency and on the cost of a network: the formal-
ism is valid also for weighted networks. Then we introduce
and discuss four simple procedures (models) to construct
unweighted and weighted networks. These simple models
help to illustrate the concepts of global efficiency, local
efficiency and cost, and to discuss the intricate relation-
ships between these three variables. We define an economic
small-world network as a low-cost system that communi-
cate efficiently both on a global and on a local scale. In
Section 4 we present a series of applications to the study
of real databases of networks of different nature, origin
and size. In particular we consider 1) neural networks:
two examples of networks of cortico-cortical connections,
and an example of a nervous system at the level of connec-
tions between neurons; 2) social networks: the collabora-
tion network of movie actors; 3) communication networks:
the World Wide Web and the Internet; 4) transportation
systems: the Boston urban transportation system.

2 The WS formulation

We start by reexamining the WS formulation of the small-
world phenomenon in topological (relational) networks
proposed by Watts and Strogatz in reference [6]. Watts
and Strogatz consider a generic graph G with N vertices
(nodes) and K edges (arcs, links or connections). G is
assumed to be:

1) Unweighted. The edges are not assigned any a priori
weight and therefore are all equal. An unweighted graph
is sometimes called a topological or a relational graph,
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because the difference between two edges can only derive
from the relations with other edges.

2) Simple. This means that either a couple of nodes
is connected by a direct edge or it is not: multiple edges
between the same couple of nodes are not allowed.

3) Sparse. This property means that K <« N(N —
1)/2, i.e. only a few of the total possible number of edges
N(N —1)/2 exist.

4) Connected. K must be small enough to satisfy prop-
erty 3, but on the other side it must be large enough to
assure that there exist at least one path connecting any
couple of nodes. For a random graph this property is sat-
isfied if K > NIn N.

All the information necessary to describe such a graph
are therefore contained in a single matrix {a;;}, the so-
called adjacency (or connection) matriz. This is a N x N
symmetric matrix, whose entry a;; is 1 if there is an edge
joining vertex i to vertex j, and 0 otherwise. Character-
istic quantities of graph G, which will be used in the fol-
lowing of the paper, are the degrees of the vertices. The
degree of a vertex i is defined as the number k; of edges
incident with vertex 4, i.e. the number of neighbours of i.
The average value of k; is k = 1/N . k; = 2K/N. In or-
der to quantify the structural properties of G, Watts and
Strogatz propose to evaluate two quantities: the charac-
teristic path length L and the clustering coefficient C.

2.1 The characteristic path length L

One of the most important quantities to characterize the
properties of a graph is the geodesic, or the shortest path
length between two vertices (popularly known in social
networks as the number of degrees of separation [8,22,23]).
The shortest path length d;; between ¢ and j is the min-
imum number of edges traversed to get from a vertex i
to another vertex j. By definition d;; > 1, and d;; = 1 if
there exists a direct edge between ¢ and j. In general the
geodesic between two vertices may not be unique: there
may be two or more shortest paths (sharing or not sharing
similar vertices) with the same length (see Refs. [16,17] for
a graphical example of a geodesic in a social system, the
collaboration network of physicists). The whole matrix of
the shortest path lengths d;; between two generic vertices ¢
and j can be extracted from the adjacency matrix {a;;}
(there is a huge number of different algorithms in the lit-
erature from the standard breadth-first search algorithm,
to more sophisticated algorithms [24]). The characteristic
path length L of graph G is defined as the average of the
shortest path lengths between two generic vertices

> dij.

i#5€G

L@) = 5= M

Of course the assumption that G is connected (see as-
sumption number 4) is crucial in the calculation of L. It
implies that there exists at least one path connecting any
couple of vertices with a finite number of steps, d;; finite
Vi # j, and therefore it assures that also L is a finite
number. For a generic graph (removing the assumption of
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connectedness) L as given in equation (1) is an ill defined
quantity, because can be divergent.

2.2 The clustering coefficient C

An important concept, which comes from social network
analysis, is that of transitivity [26]. In sociology, network
transitivity refers to the enhanced probability that the
existence of a link between nodes (persons or actors) 4
and j and between nodes j and k, implies the existence
of a link also between nodes ¢ and k. In other words in a
social system there is a strong probability that a friend of
your friend is also your friend. The most common way to
quantify the transitivity of a network G is by means of the
fraction of transitive triples, i.e. the fraction of connected
triples of nodes which also form triangles of interactions;
this quantity can be written as [16,17,27]:

B 3x # of triangles in G
4 of connected triples of vertices in G

T(G) (2)
The factor 3 in the numerator compensates for the fact
that each complete triangle of three nodes contributes
three connected triples, one centered on each of the three
nodes, and ensures that T" = 1 for a completely connected
graph [16,17]. As already said, T is a classic measure used
in social sciences to indicate how much, locally, a network
is clustered (how much it is “small world”, so to say).
In reference [6] Watts and Strogatz use instead another
quantity to measure the local degree of clustering. They
propose to calculate the so-called clustering coefficient C'.
This quantity gives the average cliquishness of the nodes
of G, and is defined as follows. First of all a quantity Cj,
the local clustering coefficient of node 4, is defined as:

C, = # of edges in G; 3)

maximum possible # of edges in Gj

# of edges in G;

T ki(k - 1)/2 @

where G; is the subgraph of neighbours of ¢, and k; is the
number of neighbours of vertex 7. Then at most k; (k;—1)/2
edges can exist in Gj, this occurring when the subgraph G;
is completely connected (every neighbour of i is connected
to every other neighbour of ). C; denotes the fraction of
these allowable edges that actually exist, and the cluster-
ing coefficient C(G) of graph G is defined as the average
of C; over all the vertices 7 of G:

C(G) = % > i (5)
i€G

In definitive C' is the average cliquishness of the nodes
of G. It is important to observe that C, although appar-
ently similar to 7', is in fact a different measure. For ex-
ample, consider the network in Figure 1: for that network,
as N gets large the transitivity converges to 0 as 1/N. On
the other hand, C' converges to 1 as 1 — 2/N. Therefore,
while in many occasions C' is indeed a good approximation
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Fig. 1. The above network is composed by N+2 nodes in total:
N nodes (the ones contained in the dotted square), plus other
two nodes on the two sides. The transitivity 7" for such network
is equal to 3/[2(IN + 2)], and therefore converges to 0 as 1/N.
On the other hand, the clustering coefficient C' is %,
which converges to 1 as 1 — 2/N.

of transitivity, it is in fact a totally different measure. We
will see in the rest of the paper how in fact C' can be seen
as the approximation of a different measure (efficiency).

2.3 The small-world behavior: the WS model

The mathematical characterization of the small-world be-
havior proposed by Watts and Strogatz is based on the
evaluation of the two quantities we have just defined, L
and C. As we will see in the following of this section,
small-world networks are somehow in between regular and
random networks: they are highly clustered like regular
lattices, yet having small characteristics path lengths like
random graphs. In reference [6] Watts and Strogatz pro-
pose a rewiring method (the WS model) to construct a
class of graphs G which interpolate between a regular lat-
tice and a random graph. The WS model starts with a
one-dimensional lattice with IV vertices, K edges, and pe-
riodic boundary conditions. Every vertex in the lattice
is connected to its k neighbours. The random rewiring
procedure consists in going through each of the edges in
turn and independently with some probability p rewire
it. Rewiring means shifting one end of the edge to a
new vertex chosen randomly with a uniform probability,
with the only exception as to avoid multiple edges (more
than one edge connecting the same couple of nodes), self-
connections (a node connected by an edge to itself), and
disconnected graphs. In this way it is possible to tune G
in a continuous manner from a regular lattice (p = 0)
into a random graph (p = 1), without altering the average
number of neighbours equal to k = 2K/N. The behavior
of L and C in the two limiting cases can be estimated
analytically [6,10,28]. For the regular lattice (p = 0), we
expect L ~ N/2k and a relatively high clustering coef-
ficient C' = [3(k — 2)]/[4(k — 1)]. For the random graph
(p = 1), we expect L ~ InN/In(k — 1) and C ~ k/N.
It is worth to stress how regular and random graphs be-
have differently when we change the size of the system V.
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If we increase NNV, keeping fixed the average number of
edges per vertex k, we see immediately that for a regu-
lar graph L increases with the size of the system, while
for a random graph L increases much slower, only log-
arithmically with N. On the other hand, the clustering
coefficient C' does not depend on N for a regular lattice,
while it goes to zero in large random graphs. From these
two limiting cases one could argue that short L is always
associated with small C, and long L with large C. In-
stead social systems, which are a paradigmatic example
of a small-world network, can exhibit, at the same time,
short characteristic path length like random graphs, and
high clustering like regular lattices [8,26]. The numerical
experiment of the WS model reveals very interesting prop-
erties in the intermediate regime: only few rewired edges
(small p # 0) are sufficient to produce a rapid drop of L,
while C' is not affected and remains equal to the value for
the regular lattice. It is in this intermediate regime that
the network is highly clustered like regular lattices and
has small characteristic path lengths like random graphs.
The WS model is a way to construct networks with the
characteristics of a small world. Of course the main ques-
tion to ask now is if the small-world behavior is only a
feature of an abstract model as the WS model, or if it can
be present in real networks. Watts and Strogatz have used
the variables L and C' to study the topological properties
of three different real networks [6]:

1) an example of social networks, the collaboration graph
of actors in feature films [29],

2) the neural network of a nematode, the C. elegans [30]
as an example of a biological network,

3) a technological network, the electric power grid of the
western United States.

They found that the three networks, when considered as
unweighted networks, are all examples of small worlds.

3 A new formulation valid for weighted
networks

The approach of Watts and Strogatz can be used when the
only information retained of a real network is about the
existence or the absence of a link, and nothing is known
about the physical length of the link (or more generically
the weight associated to the link, see the first assumption
in Sect. 2: G is unweighted), and multiple edges between
the same couple of nodes are not allowed (see the sec-
ond assumption: G is simple). Moreover the assumption of
connectedness (see assumption number four in Sect. 2) is
necessary because otherwise the quantity L would diverge.

Of course a generalization of the approach of Watts
and Strogatz to weighted networks would allow a more
detailed analysis of real networks and would extend the
range of applications. As an example, let us consider the
same three real networks studied by Watts and Strogatz
in reference [6]. In the case of films actors the analysis
must be restrained to only a part of the system, the giant
connected component of the graph, in order to avoid the
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divergence of L. Moreover the topological approximation
only provides whether actors participated in some movie
together, or if they did not at all. In reality there are, in-
stead, various degrees of correlation: two actors that have
done ten movies together are in a much stricter relation
than two actors that have acted together only once. We
can better shape this different degree of friendship by us-
ing a non-simple graph or by using a weighted network:
if two actors have acted together we associate a weight
to their connection by saying that the length of the con-
nection, instead of being always equal to one, is equal to
the inverse of the number of movies they did together. In
the case of the neural network of the C. elegans Watts and
Strogatz define an edge in the graph when two vertices are
connected by either a synapse or a gap junction [6]. This
is only a first approximation of the real network. Neurons
are different one from the other, and some of them are in
much stricter relation than others: the number of junctions
connecting a couple of neurons can vary a lot, up to a max-
imum of 72 in the case of the C. elegans. As in the case of
film actors a weighted network is more suited to describe
such a system and can be defined by setting the length of
the connection ¢ — j as equal to minimum between 1 and
the inverse number of junctions between ¢ and j. The last
network studied in reference [6], the electrical power grid
of the western United States, is clearly a network where
the geographical distances play a fundamental role. Any of
the high voltage transmission lines connecting two stations
of the network has a length, and the topological approxi-
mation, which neglect such lengths, is a poor description
of the system. Of course a generalization of the analysis
to weighted networks would also extend the application
of the small-world concept to a realm of new networks.
A very significative example is that of a transportation
system: public transportation (bus, subway and trains),
highways, airplane connections. Transportation systems
can be analyzed at different levels and in this paper we
will present an example of an application to urban public
transportation.

In the following of this section we present a way to ex-
tend the small-world analysis from topological to weighted
networks. We will show that:

1) A weighted network can be characterized by intro-
ducing the variable efficiency E, which measures how ef-
ficiently the nodes exchange information. The definition
of small-world behavior can be formulated in terms of the
efficiency: this single measure evaluated on a global and
on a local scale plays in turn the role of L and C. Small-
world networks result as systems that are both globally
and locally efficient [21].

2) The formalism is valid both for weighted and un-
weighted (topological) networks. In the case of topological
networks our measures do not coincide exactly with the
ones given by Watts and Strogatz. For example our mea-
sures works also in the case of unconnected graphs.

3) An important quantity, previously not considered
is the cost of a network. Often high (global and local)
efficiency implies an high cost of the network.
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We consider a generic graph G as a weighted and possi-
bly even non-connected and non-sparse graph. A weighted
graph needs two matrices to be described:

— the adjacency matriz {a;;}, containing the information
about the existence or not existence of a link, and de-
fined as for the topological graph as a set of numbers
a;; = 1 when there is an edge joining 7 to j, and a;; = 0
otherwise;

— a matrix of the weights associated to each link. We
name this matrix {¢;;} the matriz of physical distances
because the number ¢;; can be imagined as the space
distance between ¢ and j. We suppose £;; to be known
even if in the graph there is no edge between i and j.

To make a few concrete examples: £;; can be identified
with the geographical distance between stations ¢ and j
both in the case of the electrical power grid of the west-
ern United States studied by Watts and Strogatz, and
in the case of other transportation systems considered in
this paper. In such a situation ¢;; respect the triangular
inequality though in general this is not a necessary as-
sumption. The presence of multiple edges, typical of the
neural network of the C. elegans and of social systems like
the network of films actors, can be included in the same
framework by setting ¢;; equal to the minimum between
1 and the inverse number of edges between ¢ and j (re-
spectively the inverse number of junctions between two
neurons, or the inverse of the number of movies two ac-
tors did together). This allows to remove the hypothesis of
simple network and to consider also mon—simple systems
as weighted networks. The resulting weighted network is,
of course, a case in which the triangular inequality is not
satisfied. For a computer network or Internet ¢;; can be as-
sumed to be proportional to the time needed to exchange
a unitary packet of information between ¢ and j through a
direct link. Or as 1/v;;, the inverse velocity of a chemical
reactions along a direct connection in a metabolic net-
work. Of course, in the particular case of an unweighted
(topological) graph ¢;; = 1 Vi # j.

3.1 The efficiency E

In a weighted graph the definition of the shortest path
length d;; between two generic points ¢ and j is different
from the definition used in Section 2 for an unweighted
graph. In this case the shortest path length d;; is in
fact defined as the smallest sum of the physical distances
throughout all the possible paths in the graph from 7 to j.
Again, when f;; = 1 Vi # j, i.e. in the particular case of
an unweighted graph, d;; reduces to the minimum number
of edges traversed to get from i to j.

The matrix of the shortest path lengths {d;;} is there-
fore calculated by using the information contained both
in matrix {a;;} and in matrix {¢;;} [31]. We have d;; >
£;; Vi, 7, the equality being valid when there is an edge be-
tween ¢ and j. Let us now suppose that every vertex sends
information along the network, through its edges. We as-
sume that the efficiency €;; in the communication between
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vertex ¢ and j is inversely proportional to the shortest dis-
tance: €¢;; = 1/d;; Vi,j. Note that here we assume that
efficiency and distance are inversely proportional. This is
a reasonable approximation in general, and in particular
for all the systems considered in this paper. Of course,
sometimes other relationships might be used, especially
when justified by a more specific knowledge about the
system. By assuming €;; = 1/d;;, when there is no path in
the graph between ¢ and j we get d;; = 400 and consis-
tently €;; = 0. Consequently the average efficiency of the
graph G can be defined as [32]:

2izjeGEis _ 1 1
N(N-1) N(N-1) dij

E(G) = (6)

#jeG

Throughout this paper we consider undirected graphs,
i.e. there is no associated direction to the links. This
means that both {¢;;} and {d;;} are symmetric ma-
trices and therefore the quantity E(G) can be defined
snnply by using only half of the matrix as: F(G) =

mZZ <jea d . Anyway we prefer to give the more

general definition (6) since our formalism can be easily
applied to directed graphs as well.

Formula (6) gives a value of E that can vary in the
range [0,00[. It would be more practical to have E nor-
malized to be in the interval [0, 1]. E can be normalized
by considering the ideal case Gi9¢®! in which the graph G
has all the N(N — 1)/2 possible edges. In such a case
the information is propagated in the most efficient way
since d;; = ;5 Vi ,j, and E assumes its maximum value
E(Gideal) — N(N 1)217&]661 7.7 The efficiency E(G) con-
sidered in the following of the paper are always divided by
E(G!eal) and therefore 0 < F(G) < 1. Though the max-
imum value E = 1 is typically reached only when there
is an edge between each couple of vertices, real networks
can nevertheless assume high values of E.

3.2 Global and local efficiency

One of the advantages of the efficiency-based formalism is
that a single measure, the efficiency E (instead of the two
different measures L and C used in the WS formalism) is
sufficient to define the small-world behavior.

In fact, on one side, the quantity defined in equa-
tion (6) can be evaluated as it is for the whole graph G to
characterize the global efficiency of G. We therefore name
it Eglob: ( )

E(G

glob = m' (7)
As said before, the normalization factor E(G4¢3l) is the
efficiency of the ideal case G'9°*! in which the graph G has
all the N(IN — 1)/2 possible edges. Being the efficiency in
communication between two generic vertices, Fglo, plays
a role similar to the inverse of the characteristic path
length L. In fact L is the mean of d;;, while Eg, is the
average of 1/d;;, i.e. the inverse of the harmonic mean
of {d;; }. Nowadays the harmonic mean finds extensive ap-
plications in a variety of different fields: in particular it is



254

used to calculate the average performance of computer
systems [32,33], parallel processors [34], and communica-
tion devices (for example modems and Ethernets [35]).
In all such cases, where a mean flow-rate of information
has to be computed, the simple arithmetic mean gives the
wrong result. As we will see in Sections 3.3 and 3.5, in
some cases 1/L gives a good approximation of Egiob, al-
though Fgiop is the real variable to be considered when
we want to characterize the efficiency of a system trans-
porting information in parallel. In the particular case of a
disconnected graph the difference between the two quan-
tities is evident because L = +oo while Egqp, is a finite
number.

On the other side the same measure, the efficiency, can
be evaluated for any subgraph of G, and therefore it can
be used also to characterize the local properties of the
graph. In the WS formalism it is not possible to use the
characteristic path length for quantifying both the global
and the local properties of the graph simply because L
can not be calculated locally, most of the subgraphs of
the neighbors of a generic vertex ¢ being disconnected. In
our case, since F is defined also for a disconnected graph,
we can characterize the local properties of G by evaluating
for each vertex i the efficiency of Gj, the subgraph of the
neighbors of i. We define the local efficiency as:

=1/N>

i€G

Eloc Gldeal (8)

Here, for each vertex i, the normalization factor E(Gldeal)
is the efficiency of the ideal case Gid°¥ in which the
graph Gj has all the k;(k; — 1)/2 possible edges. Ejoc is
an average of the local efficiency and plays a role simi-
lar to the clustering coefficient C. Since ¢ ¢ Gy, the local
efficiency Fjo. tells how much the system is fault toler-
ant, thus how efficient is the communication between the
first neighbours of ¢ when 4 is removed. This concept of
fault tolerance is different from the one adopted in refer-
ence [36-38], where the authors consider the response of
the entire network to the removal of a node i. Here the
response of the subgraph of first neighbours of ¢ to the
removal of ¢ is considered.

We can now introduce a new, generalizing, definition
of small-world, built in terms of the characteristics of in-
formation flow at global and local level: a small-world net-
work is a network with high Fg o, and Elgc, i.e. very effi-
cient both in global and local communication. This defini-
tion is valid both for unweighted and for weighted graphs,
and can also be applied to disconnected graphs and/or
non sparse graphs.

3.3 Comparison between Eggp, Ejoc and L, C

It is interesting to study more in detail the correspon-
dence between our measure and the quantities L and C
of [6] (or, correspondingly, 1/L and C'). The fundamental
difference is that 1/L measures the efficiency of a sequen-
tial system, that is to say, of a system where there is only
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Fig. 2. We attach a new computer to the Internet (which al-
ready had N nodes), with a connection represented by a small
efficiency €. Having one (or few) computer with an extremely
slow connection, does not mean that the whole Internet di-
minishes by far its efficiency: in practise, the presence of such
slow computer goes unnoticed, because the other thousands of
computers are exchanging packets among them in a very effi-
cient way. L fails to properly capture the global behaviour of
systems like the Internet, unlike Fgo1, that perfectly matches
the observed behaviour (see text).

one packet of information going along the network. On
the other hand, Eg4or, measures the efficiency for parallel
systems, where all the nodes in the network concurrently
exchange packets of information. This can explain why L
works reasonably: it can be seen that 1/L is a reasonable
approximation of Ego, when there are not huge differ-
ences among the distances in the graph, and so consider-
ing just one packet in the system is more or less equivalent
to the case where multiple packets are present. This is the
case for all the networks presented in [6], and this effect
is strengthened even more by the fact that the topology
only is considered. Having explained why L behaves rel-
atively well in some case, it is also worth noticing that,
like every approximation, it fails to properly deal with all
cases. For example, the sequentiality of the measure 1/L
explains why many limitations have to be introduced, like
connectedness, that are present just in order to make the
formulas valid. Consider the limit case where a node is
isolated from the system. In the case of a neural network,
this corresponds for example to the death of a neuron. In
this case, 1/L drops to zero (L = +00), which is of course
not the overall efficiency of the system: in fact, the brain
continues to work, as all the other neurons continue to
exchange information; only, the efficiency is just slightly
diminished, as now there’s one neuron less. And, correctly,
this is properly taken into account using Egion. Even with-
out dropping the connectedness assumption, another ex-
ample can show how in the limit case, the approximation
given by 1/L diverges from the real efficiency measure. Let
us consider the Internet and the situation represented in
Figure 2 suppose we attach a new computer to the Inter-
net (which already had N nodes), with efficiency e, that
can be seen as the speed of the connection. This happens
every time the Internet is augmented with a new com-
puter, and every time we turn on our computer in the
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office. A situation like this occurs daily in the order of the
millions. How does it globally affect the Internet, accord-
ing to L and Ego,? It can be proved that L augments
by approximately E(N—l—i-l) This means that if for any rea-
son, the connection speed is particularly slow (or becomes
such, for example due to a congestion, or the computer
gets low in resources), the whole Internet’s L is heavily
affected and can rapidly become enormous. Even, when-
ever the computer blocks (or it’s shut down), L diverges to
infinity (like, so to say, if the Internet had collapsed). On
the other hand, the efficiency Egop has a relative decre-
ment of approximately NLH, which means that in practice,
as IV is quite large, the particular behaviour of the new
computer affects the Internet in a negligible way. Sum-
ming up, having one or few computer with an extremely
slow connection, does not mean that the whole Internet
diminishes by far its efficiency: in practise, the presence
of such few very slow computers goes unnoticed, because
the other thousands of computers are exchanging pack-
ets among them in a very efficient way. Therefore, L fails
to properly capture the global behaviour of systems like
the Internet (1/L would give a number very close to zero
because, it measures the average efficiency in case a sin-
gle packet is active thorough the Internet), unlike Egiop,
that perfectly matches the observed behaviour. The cru-
cial point here is the following: all the networks consid-
ered in [6] to justify the definition of small-worlds (and, in
fact, most of the networks the model complex systems) are
parallel systems, where all the nodes interact in parallel
(Internet, World Wide Web, social networks, neural sys-
tems and so on). With this assumption, Egiol, measures
the real efficiency of the system, and 1/L is just a first
rough approximation, as it deals with the sequential case
only. We turn now our attention to C' and Ejo.. As we have
seen in Section 2, the true meaning of the clustering coef-
ficient C cannot be sought in the classic clustering mea-
sure of social sciences, i.e. transitivity: the two quantities
may diverge, giving diametrically opposite results for the
same networks. On the other hand, it can be shown that
C, in the case of undirected topological graphs, is always
a reasonable approximation of Ej,.. Therefore, the seem-
ingly ad hoc nature of C' in the WS formalism, now finds
a new meaning in the general notion of efficiency: there
are not two different kinds of properties to consider when
analyzing a network on the local and on the global scale,
but just one unifying concept: the efficiency to transport
information.

3.4 The cost of a network

An important variable to consider, especially when we deal
with weighted networks and when we want to analyze and
compare different real systems, is the cost of a network. In
fact, we expect the efficiency of a graph to be higher as the
number of edges in the graph increases. As a counterpart,
in any real network there is a price to pay for number and
length (weight) of edges. In particular the ‘short cuts’, i.e.
the rewired edges that produce the rapid drop of L and
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the onset of the small-world behavior in the WS model
connect at no cost vertices that would otherwise be much
farther apart. It is therefore crucial to consider weighted
networks and to define a variable to quantify the cost of
a network. In order to do so, we define the cost of the
graph G as:

ditjea aij'Y(gij).
Zi;ﬁjeG v(£ij)

Here, v is the so-called cost evaluator function, which cal-
culates the cost needed to build up a connection with a
given length. Of course, v could be equivalently defined
on efficiencies rather than distances (so, indicating in a
sense the cost to set up a communication channel with
the given efficiency). Note that we have already included
in the numerator of this definition the cost of Gideal the
ideal graph in which all the possible edges are present. Be-
cause of such a normalization, the v function needs only to
be defined up to a multiplicative constant, and the quan-
tity Cost(G) is defined in the interval [0, 1], assuming the
maximum value 1 for Gid¢al j ¢ when all the edges are
present in the graph. Cost(G) reduces to the normalized
number of edges 2K /N (N —1) in the case of an unweighted
graph (for example the WS model).

Unless otherwise specified, we will assume in the fol-
lowing that v is defined as the identity function: vy(z) = «.
In fact such a cost evaluator works for unweighted net-
works, and also for most of the real networks, those
where the cost of a connection is proportional to its
length (to the Euclidean distance for example): in all such
cases the definition of the cost reduces to Cost(G) =
(Zi;ﬁjeG aij&-j)/(zi;ﬁjeG EU) A different definition of
the cost evaluator function will be used instead when
we represent networks with multiple edges as weighted
graphs (for examples in the weighted C. elegans and in
the weighted movie actors).

With our formalism based on the two efficiencies Egion
and Fjc, and on the variable Cost, all defined in the range
from 0 to 1, we can study in an unified way unweighted
(topological) and weighted networks. We therefore define
the following key notion: let us call economic every net-
work with low Cost; then, an economic small-world is a
network having high Ejoc and Egop, and low Cost (i.e.,
both economic and small-world).

Cost(G) = 9)

3.5 The economic small-world behavior

We are now ready to illustrate the three quantities Egjop,
FEioe and Cost at work in some practical examples. Start-
ing from the original WS model, and proceeding with
different models, we will illustrate how these three quan-
tities behave in a dynamic environment where the net-
work changes, have some nontrivial interaction among
each other, and give birth to small-worlds [24,31]. Model 1
(the WS model) is a procedure to construct a family of un-
weighted networks with a fixed cost. Model 2 is a way to
construct unweighted networks, this time with increasing
cost. Model 3 and model 4 are two examples of weighted
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Fig. 3. Global and local efficiency for model 1 (the WS model),
the class of topological graphs considered by Watts and Stro-
gatz. A regular lattice with N = 1000 and k edges per node is
rewired with probability p. The logarithmic horizontal scale is
used to resolve the rapid increase in Eglo1, due to the presence
of short cuts and corresponding to the onset of the small-world.
During this increase, Ejoc remains large and almost equal to
the value for the regular lattice. Small worlds have high Egiop
and FEjo.. We consider three different values £ = 6,10, 20 cor-
responding respectively to Cost = 0.006,0.01,0.02. Here and
in the following figures the efficiency and the cost are dimen-
sionless quantities normalized to the values of the ideal graph.

networks. In particular in model 4 the length of the edge
connecting two nodes is the Euclidean distance between
the nodes.

Model 1) The original WS model is unweighted (topo-
logical): this means we can set {;; = 1 Vi # j, and the
quantities d;; reduce to the minimum number of edges
to get from 4 to j. The dynamic changes of the network
consist in rewirings: since the weight is the same for all
edges, also for rewired edges, this means that the Cost
(that is proportional to the total number of edges K)
does not change with the rewiring probability p. In Fig-
ure 3 we consider a regular lattice with N = 1000 and
three different values of k (k = 6,10,20), correspond-
ing to networks with different (low) cost (respectively
Cost = 0.006,0.01,0.02), and we report Egiop and FEioc
as a function of p [24]. For p = 0 we expect the system
to be inefficient on a global scale (an analytical estimate
gives Egiop ~ k/N log(N/K)), but locally efficient. The
situation is inverted for random graphs. In fact, for exam-
ple in the case k = 20, at p = 1 Egjop assumes a maxi-
mum value of 0.4, meaning 40% the efficiency of the ideal
graph with an edge between each couple of vertices. This
happens at the expenses of the fault tolerance (Ejo. ~ 0).
The (economic) small-world behavior appears for interme-
diate values of p. It results from the fast increase of Egiop
caused by the introduction of only a few rewired edges
(short cuts), which on the other side do not affect Fjoc.
For the case k = 20, at p ~ 0.1, Eglop has almost reached
the maximum value of 0.4, though Fj,. has only dimin-
ished by very little from the maximum value of 0.82. For
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Fig. 4. Model 1 (the WS model). A regular lattice with N =
1000 and k£ = 10 edges per node is rewired with probability p.

. i Egiob (P) y—1 Eloc(p) i
Reporting the quantities (Eglob(o)) and B0y as a function

of p, the two curves show a behavior similar respectively to
L(p) and C(p).
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Fig. 5. Model 2. A network is created by adding links ran-
domly to an initial configuration with N = 100 nodes and no
links. Egiob and Eioc are plotted as functions of the C'ost. The
identity curve Cost is also reported to help the reader since a
logarithmic horizontal scale is used.

such an unweighted case the description in terms of net-
work efficiency is similar to the one given by Watts and
Strogatz. In Figure 4 we show that if we report the quan-
tities 1/ Egion(p) and Eiec(p), and we use a normalization
similar to the one adopted by Watts and Strogatz, i.e.
Eg101(0)/ Egion (p) and Eioc(p)/ Eioc(0), we get curves with
qualitatively the same behavior of the curves L(p)/L(0)
and C(p)/C(0) (compare with the figures in Ref. [6]).
Model 2) The above model has proved success-
ful in order to produce small-worlds, i.e. networks with
high Egjo1, and high Fio.. However, if that is the goal, then
there are much simpler procedures that can output a small
world, even starting from an arbitrary configuration. For
example in Figure 5 we consider a model where, starting
from a configuration with NV = 100 nodes and no links we
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keep adding links randomly, until we reach a completely
connected network. This model is unweighted as model 1.
Contrarily to the case of model 1, the network changes
by adding links, then the cost is not a fixed quantity but
varies in a monotonic way, increasing every time we add a
link. As we can see, for Cost ~ 0.5—0.6 we obtain a small-
world network with Egior, = Eloc = 0.8. So, if this trivial
method manages to produce small worlds, why can’t we
find many small worlds like these in nature? The obvi-
ous answer is that here, we are obtaining a small-world at
the expense of the cost: with rich resources (high cost),
the small-world behaviour always appears. In fact, in the
limit of the completely connected network (Cost = 1) we
have Egion, = Fioc = 1. But what also matters in nature is
also economy of a network, and in fact a trivial technique
like this fails to produce economic small worlds.

Note also that the relationship of the variable cost with
respect to the other two variables is not that trivial. Even
in the very simple and rigid “monotonic” setting dictated
by this model we observe an interesting behavior of the
variables Fglop, and Ejoc as functions of Cost. In particu-
lar we observe a rapid rise of Ej,. when the cost increases
from 0.1 to 0.2. This means that moving from Cost = 0.1
to Clost = 0.2 we can increase the local efficiency of the
network from Ejo. = 0.1 to Ejo. = 0.6. We therefore ob-
tain a network with 60% of the efficiency of the ideal net-
work both on a global and local scale, with only the 20%
of the cost: this is an example of an economic small-world
network. The effect we have observed has an higher prob-
ability to happen in the mid-area inbetween the areas of
low cost and high cost, and it is a first sign that com-
plex interactions do occur, but not with very low cost or
with very high cost (where economic small-worlds can’t
be found).

Model 3) In this third model, we combine features
of the previous models 1 and 2: we adopt rewiring as in
model 1, monotonic increase of the cost as in model 2.
So, while in model 1 the short cuts connect at no cost
(because ¢;; = 1 Vi # j) vertices that would otherwise
be much farther apart (which is a rather unrealistic as-
sumption for real networks), in this model each rewiring
has a cost. In Figure 6 we implement a random rewiring in
which the length of each rewired edge is set to change from
1 to 3. So, note that this model, unlike the previous two, is
weighted. The figure shows that the small-world behaviour
is still present even when the length of the rewired edges
is larger than the original one. For p around the value 0.1
we observe that Egiop, has almost reached the maximum
value 0.18 (18% of the global efficiency of the ideal graph
with all couples of nodes directly connected with edges of
length equal to 1) while Ej,. has not changed too much
from the maximum value 0.8 (assumed at p = 0). The
only difference with respect to model 1 is that the be-
haviour of Egop is not simply monotonic increasing. Of
course in this model the variable Cost increases with p.
It is interesting to notice that the curve Cost as a func-
tion of p, plotted in the bottom of the figure, is specular
to the curve Ejo. as a function of p. This means that in
the small-world situation, the network is also economic,
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Fig. 6. The three quantities Egiob, Eioc and Cost are reported
as functions of p in model 3. We start with a regular lattice with
N = 1000 and k£ = 10 and we implement the same rewiring
procedure as in the WS model, with only difference that the
length of the rewired edge is set to change from the value 1 to
the value 3. The economic small-world behavior shows up for
p~0.1.

in fact the Cost stays very close to the minimum possi-
ble value (assumed of course in the regular case p = 0).
We have checked the robustness of the results obtained by
increasing even more the length of the rewired edges.

Therefore, this model shows that to some extent, the
structure of a network plays a relevant role in the economy.
Also, note that in this more complex (weighted) model, be-
haviour of Fjo. and FEglop become more complex as well:
now, Egon is not a monotonic function of the cost any
more, and Ej,. is monotonic, but decreasing. So, introduc-
tion of the weighted model further shows how the relative
behaviour of the three variables Egon, Eioc and Cost is
far from simple.

Model 4) As a final example we build on model 3, and
ground it more in reality using a real geometry, in order
to investigate further whether the above effects can also
appear in real networks which are not just mathematical
possibilities. In this weighted model, the length of the edge
connecting two nodes is the Euclidean distance between
the nodes. The nodes can be placed with different geome-
tries. Here we consider the case in which the IV nodes are
placed on a circle as in the WS model. Now the geometry
is important because the physical distance between node ¢
and j (4,5 = 1,..., N) is defined as the Euclidean distance
between i and j. In the case of nodes on a circle we have:

0. — 2sin(|i —j|7T/N).
" 2sin(w/N)

(10)
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Fig. 7. The three quantities Egiob, Fioc and Cost are reported
as functions of p in model 4. We start with a regular lattice
with N = 1000 and a total number of edges K = 1507 (see
detail in the text) and we implement the rewiring procedure
with probability p. The economic small-world behavior shows
up for p ~ 0.02 — 0.04.

In this formula we have set the length of the arc be-
tween two neighbours to be equal to 1, ie. f£;; = 1
when |i — j| = 1. The radius of the circle is then R =
1 sin(w/2)/sin(7/N). In Figure 7 we report the results
obtained by implementing a rewiring procedure similar to
the one considered in the previous models. The only dif-
ference with respect to the previous case is that now we
cannot start from a lattice with N = 1000, £ = 10. Such
a network, in fact, when considered with the metrics in
formula (10) would have K = 5000 edges and a too high
global efficiency, about 99% of the ideal graph. On the
other side, considering as a starting network a lattice with
k = 2 would affect the local efficiency. Then we proceed as
follows. We create a regular network with N = 1000 and
k = 6 and then we eliminate randomly the 50% of the 3000
edges to decrease the global efficiency: in the random real-
ization reported in figure we are left with K = 1507 edges.
At this point we can implement the usual rewiring process
on this network. For p ~ 0.02 —0.04 we observe that Fgop
has almost reached its maximum value 0.62 while FEj.
has not changed much from the maximum value 0.2 (as-
sumed at p = 0). As in model 3 the behaviour of Egip
is not simply monotonic decreasing, and as in model 3
the small-world network is also an economic network, i.e.
the Cost stays very close to the minimum possible value
(assumed of course for p = 0).

So, this model and model 3 suggest that the economic
small-world behavior is not only an effect of the topolog-
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ical abstraction but can also be found in all the weighted
networks where the physical distance is important and the
rewiring has a cost (and, shows how intricate the relative
behaviour of Egiop, Eioc and Cost can be).

4 Applications to real networks

With our formalism based on the three quantities Egiop,
Ejoc, and Cost, all defined in the range from 0 to 1, we
can study in an unified way unweighted (topological) and
weighted networks, and we are therefore well equipped
to consider some empirical examples. In this paper we
present a study of 1) neural networks (two examples of
networks of cortico-cortical connections, and an example
of a nervous system at the level of connections between
neurons), 2) social networks (the collaboration network
of movie actors), 3) communication networks (the World
Wide Web and the Internet), 4) transportation systems
(the Boston urban transportation systems).

4.1 Neural networks

The brain is the most complex and fascinating informa-
tion transportation system. Its staggering complexity is
the evolutionary result of adaptivity, functionality and
economy. The brain complexity is already reflected in the
complexity of its structure [39]. Of course neural struc-
tures can be studied at several levels of scale. In fact,
thanks to recent experiments, a wealth of neuroanatom-
ical data ranging from the fine structure of connectivity
between single neurons to pathways linking different ar-
eas of the cerebral cortex is now available. Here we focus
first on the analysis of the neuroanatomical structure of
cerebral cortex, and then on a simple nervous system at
the level of wiring between neurons.

1) Networks of cortico-cortical connections. The
anatomical connections between cortical areas and group
of cortical neurons are of particular importance because
they are considered to have an intricate relationship with
the functional connectivity of the cerebral cortex [40]. We
analyze two databases of cortico-cortical connections in
the macaque and in the cat [41]. The databases consist
of the wiring diagrams of the two system, and there is
no information about the weight associated to the links:
therefore we will study these systems as unweighted net-
works. The macaque database contains N = 69 cortical
areas and K = 413 connections (see Ref. [42], cortical
parcellation after [43], except auditory areas which follow
Ref. [44]). The cat database has instead N = 55 cortical
areas (including hippocampus, amygdala, entorhinal cor-
tex and subiculum) and K = 564 (revised database and
cortical parcellation from [45]). The results in the first two
lines of Table 1 indicates the two networks are economic
small-worlds: they have high global efficiency (respectively
52% and 69% the efficiency of the ideal graph) and high
local efficiency (70% and 83% the ideal graph), i.e. high
fault tolerance [46] with only 18% and 38% of the wirings.
Moreover Eglop is similar to the value for random graphs,
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Table 1. The macaque and cat cortico-cortical connec-
tions [41] are two unweighted networks with respectively
N =69 and N = 55 nodes, K = 413 and K = 564 connec-
tions. Global efficiency, local efficiency and cost are reported
in the first two lines of the table. The results are compared
to the efficiency of random graphs [47]. The nervous system
of C. elegans is better described by a weighted network: the
network consists of N = 282 nodes and K = 2462 edges which
can be of two different kind, either synaptic connections or gap
junctions. This time, associated to each link, there is weight
(see text). In the third line of the table we report the result
for the C. elegans considered as unweighted (to compare with
cortico-cortical networks), while in the fourth line we consider
the weights. All these systems are examples of economic small
worlds.

Unweighted:  Egiob Eg?:fom Floc  Erandom gt
Macaque 0.52 0.57 0.70 0.35 0.18
Cat 0.69 0.69 0.83 0.67 0.38
C. elegans 0.46 0.48 0.47 0.12 0.06
Weighted:  Egiob Fioc Cost
C. elegans 0.35 0.34 0.18

while Ejoc is larger than E{O“C"d"m [47]. These results in-
dicate that in neural cortex each region is intermingled
with the others and has grown following a perfect balance
between cost, local necessities (fault tolerance) and wide-
scope interactions.

2) A network of connections between neurons. As a
second example we consider the neural network of C. ele-
gans the only case of a nervous system completely mapped
at the level of neurons and chemical synapses [48]. The
database we have considered, is the same considered by
Watts and Strogatz and is taken from reference [30]. As
already discussed in Section 3, the nervous system of C. el-
egans is better described by a weighted network. In fact
the C. elegans is a multiple edges system, i.e. there can
be more than one edge (up to 72 edges) between the same
couple of nodes 7 and j. The presence of multiple edges can
be expressed in our weighted networks formalism by con-
sidering a simple but weighted graph, and setting ¢;; equal
to the inverse number of edges between i and j. In this way
we get a weighted network consisting of N = 282 nodes
and K = 2462 edges (an edge i — j is defined by the pres-
ence of at least one synaptic connection or gap junction).
Now, observe that doing this choice to weight the system,
we then have to define appropriately the cost evaluator
function ~ (which can not be the identity any more): the
correct choice is to set y(x) = 1/x, that is to say, the cost
of a connection is the number of synaptic connections and
gap junctions that make it.

In order to compare the C. elegans to the two cortico-
cortical connections networks, we first consider it as an
unweighted network neglecting the information contained
in {¢;;} (asif £;; =1 Vi # j). Similarly to the two cortico-
cortical connections networks, the unweighted C. elegans
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is also an economic small-world network. In third line
of Table 1 we see that with a relative low cost (6%
of the wirings), C. elegans achieves about a 50% of both
the global and local efficiency of the ideal graph (see also
the comparison with the random graph). Moreover the
value of Egop, is similar to Eioe. This is a difference from
cortex databases, where fault tolerance is slightly privi-
leged with respect to global communication. Finally we
can consider the C. elegans in all its completeness, i.e. as
a weighted graph. Of course in this case the random graph
does not give any more the best approximation for Egiop.
Nevertheless the values of Egob, Eloc and Cost have a
meaning by themselves, being normalized to the case of
the ideal graph. We get (see the fourth line of 1) that the
C. elegans is also an economic small-world when consid-
ered as a weighted network with about 35% of the global
and local efficiency of the ideal graph, obtained with a
cost of 18%. It is interesting to notice that, as in the un-
weighted case, the system has similar values of Ego1, and
Eyoc (that is, it behaves globally in the same way as it
behaves locally). The connectivity structure of the three
neural networks studied reflects a long evolutionary pro-
cess driven by the need to maximize global efficiency and
to develop a robust response to defect failure (fault toler-
ance). All this at a relatively low cost, i.e. with a small
number of edges, or with a minimum amount of the length
of the wirings.

4.2 Social networks

As an example of social networks we study the collabora-
tion network of movie actors extracted from the Internet
Movie Database [29], as of July 1999. The graph consid-
ered has N = 277336 and K = 8721428, and is not a con-
nected graph. The approach of Watts and Strogatz cannot
be applied directly and they have to restrict their analysis
to the giant connected component of the graph [6]. Here
we apply our small-world analysis directly to the whole
graph, without any restriction. Moreover the unweighted
case only provides whether actors participated in some
movie together, or if they did not at all. Of course, in re-
ality there are instead various degrees of correlation: two
actors that have done ten movies together are in a much
stricter relation rather than two actors that have acted
together only once. As in the case of C. elegans we can
better shape this different degree of friendship by using
a weighted network: we set the distance ¢; ; between two
actors ¢ and j as the inverse of the number of movies they
did together.

As in the case of the C. elegans, together with this
choice to weight the system, we also have to define appro-
priately the cost evaluator function -: the correct choice
is (again) to set y(x) = 1/x, that is to say, the cost of a
connection between two persons is the number of movies
they did together.

The numerical values in Table 2 indicate that both the
unweighted and the weighted network shows the economic
small-world phenomenon. In both cases, cost comes out as
a leading principle: this is due somehow to physical lim-
itations, as it is not easy for actors to perform in a huge
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Table 2. The collaboration network of movie actors (extracted
from the Internet Movie Database, IMD) can be described by
an unweighted or a weighted graph with N = 277336 and
K =8721428.

Unweighted: Egiob Eg?;fom Eloc  Erandom gt
Movie Actors 0.37  0.41 0.67 0.00026  0.0002
Weighted: Egiob  Eioe  Cost
Movie Actors 0.29  0.52 0.0005

number of movies, and for most of them, their career is
in any case limited in time, while the database spans all
the temporal age. Of course other social systems can be
studied by means of our formalism: for example the col-
laboration network of physicists [16,17], the collaboration
network of Marvel comics characters [49], or some other
databases of social communities [18,50].

4.3 Communication networks

Communication networks are ubiquitous nowadays: the
so-called “information society” heavily relies on such net-
works to rapidly exchange information in a distributed
fashion, all over the world. Here, we consider the two most
important large-scale communication networks present
nowadays: the World Wide Web and the Internet. Note
that despite these two networks are often confused and
identified, they are fundamentally different: the World
Wide Web (WWW) network is based on information ab-
straction, via the fundamental concept of URI (Uniform
Resource Identifier); so, it is not a physical structure, but
an abstract structure. On the other hand, the Internet is
a physical communication network, where each link and
node have a physical representation in space. So, despite
these two communication networks share lot of common-
alities (last but not least, the fact the WWW essentially
relies on the Internet structure to work), they are bottom-
down deeply different: one network (WWW) is purely
conceptual, the other one (the Internet) is physical. We
have studied a database of the World Wide Web with
N = 325729 documents and K = 1090108 links, and a
network of Internet with NV = 6474 nodes and K = 12572
links. Both networks are considered as unweighted graphs.
In Table 3 we report the result of the efficiency-cost anal-
ysis of the two networks. As we can see, they have rela-
tively high values of Egop, (slightly smaller than the best
possible values obtained for random graphs) and Fje, to-
gether with a very small cost: therefore, both of them are
economic small-worlds. Observe that interestingly, despite
the WWW is a virtual network and the Internet is a phys-
ical network, at a global scale they transport information
essentially in the same way (as their Egob’s are almost
equal). At a local scale, the larger Ej,. in the WWW case
can be explained both by the tendency in the WWW to
create Web communities (where pages talking about the
same subject tend to link to each other), and by the fact
that many pages within the same site are often quickly
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Table 3. Communication networks. Data on the World
Wide Web from http://www.nd.edu/ "networks contains N =
325729 documents and K = 1090 108 links [19], while the In-
ternet database is taken from http://moat.nlanr.net and has
N = 6474 nodes and K = 12572 links. Both systems are stud-
ied as unweighted graphs and are examples of economic small
worlds.

Egon  ERndo™  Ee EP2M™  Cost
WWW 028 028 0.36  0.000001  0.00002
Internet  0.29  0.30 0.26  0.0005 0.006

connected to each other by some root or menu page. As
far as the cost is concerned, it is striking to notice how
economic these networks are (for example, compare these
data with the corresponding ones for the cases of neu-
ral networks). This clearly indicates that economy is a
fundamental construction principle of the Internet and of
the WWW.

4.4 Transportation networks

We focus now on another example of man-made networks,
the transportation networks. As a paradigmatic example
of a system belonging to this class we consider the Boston
public transportation system. Other examples, like the
Paris subway systems and the network of airplanes and
highway connections throughout the world, are currently
under study and will be presented in a future work [51].
The Boston subway transportation system (MBTA) is the
oldest subway system in the US (the first electric street-
car line in Boston, which is now part of the MBTA Green
Line, began operation on January 1, 1889) and consists
of N = 124 stations and K = 124 tunnels (connecting
couples of stations) extending throughout Boston and the
other cities of the Massachusetts Bay [52]. As some of the
previous databases, this is another example of a network
better described by a weighted graph: in this case the ma-
trix {¢;;} is given by the Euclidean distance between i
and 7, i.e. by the geographical distances between stations.
In this sense the MBTA is a weighted network more similar
to the electrical power grid of the western United States
than to weighted networks representing multiple edges
systems like the neural network of the C. elegans or to the
network of films actors. In fact in the case of the MBTA
the quantities £;; respect the triangle inequality and the
definition of the ideal graph is straightforward since the
spatial distance ¢;; between stations ¢ and j is perfectly
defined, independently from the existence or not of the
edge i — j. In particular the matrix {¢;;} has been calcu-
lated by using information databases from the MBTA [52],
from the Geographic Data Technology (GDT), and the
US National Mapping Division. We proceed step by step:
we first study the system in the unweighted approxima-
tion illustrating how in this case L and C' does not work,
and we must use the efficiency-based formalism; we finally
study the efficiency of the MBTA in its completeness, as
a weighted network [21,53].
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In the unweighted network approximation the informa-
tion contained in {¢;;} is not used (as if ¢;; = 1 Vi # j).
Now, consider for example L: if we apply to the MBTA
the original formalism presented in Section 2, valid for un-
weighted (topological) networks, we obtain L = 15.55 (an
average of 15 steps, or 15 stations to connect 2 generic sta-
tions). And now, to decide if the MBTA is a small world
we have to compare the obtained L to the respective val-
ues for a random graph with the same N and K. But,
when we consider random graphs [47] we get disconnected
graphs and L = co. So, we are unable to draw any conclu-
sion. On the other side, the same unweighted network can
be perfectly studied by using the efficiency formalism of
Section 3. The problem of the divergence we had for L is
here avoided, because when there is no path in the graph
between ¢ and j, d;; = +o0o and consistently €; = 0.
The results are reported in the first line of Table 4 and
compared with the values obtained for the random graph
with same number of N and K (as said before, in the un-
weighted case, the random graph provides the best value
of Egion). We see immediately that the unweighted net-
work is not a small world because the Ej,. should be much
larger than Ef(?cndom, and is instead smaller than Ef(?cndom.
In the second line of Table 4 we report the results for the
weighted case, i.e. the case in which the link characteris-
tics (lengths in this case) are properly taken into account,
and not flattened into their topological abstraction. As a
main difference from the unweighted case considered be-
fore, in a weighted case the random graph does not give
the estimate of the highest global efficiency. In any case
the quantities Eglo, and Ejoc have a meaning by them-
selves because of the adopted normalization: the numbers
shows MBTA is a very efficient transportation system on a
global scale but not at the local level. In fact Egjo, = 0.63
means that MBTA is only 37% less efficient than the ideal
subway with a direct tunnel from each station to the oth-
ers. On the other hand E,. = 0.03 indicates a poor lo-
cal efficiency: differently from a neural network or from a
social system the MBTA is not fault tolerant and a dam-
age in a station will dramatically affect the efficiency in
the connection between the previous and the next sta-
tion. To understand better the difference with respect to
the other systems previously considered we need to make
few general considerations about the variable Cost and
the rationales in the construction principles. As said be-
fore in general the efficiency of a graph increases with the
number of edges. As a counterpart, in any real network
there is a price to pay for number and length (weight)
of edges. If we calculate the cost of the weighted MBTA
we get Cost = 0.002, a value much smaller than the ones
obtained for example for the three neural networks con-
sidered, respectively Cost = 0.18,0.38,0.06 — 0.07. This
means that MBTA achieves the 63% of the efficiency of
the ideal subway with a cost of only the 0.2%. The price
to pay for such low-cost high global efficiency is the lack
of fault tolerance. The difference with respect to neural
networks comes from different needs and priorities in the
construction and evolution mechanism. A neural network
is the results of perfect balance between global and lo-

261

Table 4. The MBTA can be considered as a network of
N = 124 nodes and K = 124 links. The MBTA is first stud-
ied as an unweighted network and then as a weighted network.
Finally the weighted network consisting in the underground
transportation system plus the bus transportation system is
considered as a more complete transportation system. The ma-
trix {f;;} has been calculated by using databases from the
MBTA [52] and the US National Mapping Division.

Unweighted:  Eglob E;i‘,‘gom Eio.  Epandem  Cost
MBTA 0.10 0.14 0.006 0.015 0.016
Weighted: Egiob  Eioe  Cost
MBTA 0.63  0.03 0.002
MBTA + bus 0.72 046 0.004

cal efficiency. On the other side, when we build a subway
system, the priority is given to the achievement of global
efficiency at a relatively low cost, and not to fault tol-
erance. In fact a temporary problem in a station can be
solved in an economic way by other means: for example,
waling, or taking a bus from the previous to the next sta-
tion. That is to say, the MBTA is not a closed system:
it can be considered, after all, as a subgraph of a wider
transportation network. This property is very often so un-
derstood that it is not even noted (consider for example,
the case of the brains), but it is nevertheless of fundamen-
tal importance when we analyze a system: while global
efficiency is without doubt the major characteristic, it is
closure that somehow leads a system to have high local ef-
ficiency (without alternatives, there should be high fault-
tolerance). The MBTA is not a closed system, and thus
this explains why, unlike in the case of neural networks
fault tolerance is not a critical issue. Changing the MBTA
network to take into account, for example the bus sys-
tem, indeed, this extended transportation system comes
back to be an economic small-world network. In fact the
numbers in the third line of Table 4 indicate that the ex-
tended transportation system achieve high global but also
high local efficiency (Egiob = 0.72, Eioc = 0.43), at a still
low price (Cost has only increased from 0.002 to 0.004).
Qualitatively similar results have been obtained for other
underground systems [51]. Transportation systems can of
course also be analyzed at different scales: a similar anal-
ysis on a wider transportation system, consisting of all
the main airplane and highway connections throughout
the world, shows a small-world behavior [51]. This can
be explained by the fact that in such a system we con-
sider almost all the reasonable transportation alternatives
available at that scale. In this way the system is closed,
i.e. there are no other reasonable routing alternatives, and
so fault-tolerance comes back, after the cost, as a leading
construction principle.

5 Conclusions

The small-world concept has shown to have lot of appeal
both in sociology (where it comes from), and in science
(after the seminal paper [6], a lot of attention has been
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devoted to this subject). On the other hand, some aspects
of the small worlds were still not well understood. What
is the significance of the variables involved? Are they ad-
hoc parameters, with their somehow intuitive meaning,
or there is a deeper plot? And more: is the small-world
just a concept valid for topological graphs or can it be ex-
tended to weighted networks? In this paper we have tried
to cast some light on the above points by presenting a
reformulation of the small-world concept, which extends
the WS ideas to the more complex cases of weighted net-
works. The key realization that small-world networks of
interest represent parallel system, and not just sequential
ones, brings then to the introduction of efficiency as the
generalizing notion, able to capture the essential charac-
teristics of the small-world. Efficiency can be seen as the
leading trail that is present both at local and global level,
and allows a smooth extension of the small-world from the
abstractions of the topological world, to the real world of
weighted networks. Together with efficiency, it naturally
arises also the need of a new variable, the cost, by the
observation that in real networks, the target principles of
construction (efficiency) also have to take into account the
fact that resources are not unlimited (like in model 2),
and therefore in reality networks have to somehow be a
compromise between the search for performance, and the
need for economy. The cost of a network nicely couples
with the efficiency to provide a meaningful description of
the “good” behaviour of a network, what is called in the
paper an economic small-world. We have shown how local
efficiency, global efficiency and cost can exhibit somehow
complex interactions in dynamically evolving networks, so
showing that economic small-worlds in nature are not triv-
ial to construct and analyze, but are in fact the product
of careful balancing among these three components. More-
over, the use of these three parameters also allows a precise
quantitative analysis of a network, giving precise measure-
ments as far as the information flow, and use of resources,
are concerned. So, they give a general measure that can be
used to help us understand not only whether a network is
an economic small world or not, but also to quantitatively
capture with finer degree how these three aspects con-
tribute in the overall architecture. Finally, we have applied
the measures to a variety of networks, ranging from neural
networks, to social networks, to communication networks,
to transportation systems. In all these cases, but one, we
have seen the appeareance of the economic small-world
behaviour, and even more, we have been able to push the
analysis further, showing in a sense how the construction
principles have played their subtle game of interaction.
Moreover, we have shown that the only case of failure of
the economic small-world behaviour (the MBTA ), is in a
sense just apparent, and can be explained as the lack of
an important, but often forgotten, underlying feature: the
closure of the system.

Summing up, the presented theory seems to substan-
tiate the idea that efficiency and economy (i.e., economic
small-worlds) are the leading construction principles of
real networks. And, the ways these principles interact can
be quantitatively analyzed, in order to provide us with
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better intuition on how things work, and how particular
networks better adapt to their specific needs.
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